
Introduction to Software Testing
(2nd edition)

Chapter 1

What is Software Testing?
Why Do We Test Software?

Slides by: Paul Ammann & Jeff Offutt
http://www.cs.gmu.edu/~offutt/softwaretest/

Modified by: Morteza Zakeri

Updated August 2018
First version, 28 August 2011

Instructor: Morteza Zakeri

http://www.cs.gmu.edu/~offutt/softwaretest/

Lecturer

•Morteza Zakeri
• Ph.D. in Computer Engineering (Software),

• Iran University of Science and Technology (IUST)

• https://m-zakeri.github.io

•Member of
• Software Reverse Engineering Research Laboratory

• http://reverse.iust.ac.ir

• Association for Computing Machinery (ACM)
• https://member.acm.org/~mzakeri-nasrabadi

• Interested in
• Program analysis and transformation

• Software testing and software quality assurance

• Artificial intelligence for software engineering (AI4SE)

• Compilers

2
© Zakeri

https://m-zakeri.github.io/
http://reverse.iust.ac.ir/
https://member.acm.org/~mzakeri-nasrabadi

About the IUST

• The university is among the top 4 university in Iran

• Located at Tehran city (Narmak)

3
© Zakeri

Testing in the 21st Century

•Software defines behavior
• network routers, finance, switching networks, other infrastructure

•Today’s software market:
• is much bigger

• is more competitive

• has more users

•Embedded Control Applications
• airplanes, air traffic control

• spaceships

• watches

• ovens

• remote controllers

•Agile processes put increased pressure on testers
• Programmers must unit test – with no training or education!

• Tests are key to functional requirements – but who builds those tests?

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 4

– PDAs

– memory seats

– DVD players

– garage door openers

– cell phones

Industry is going through a
revolution in what testing
means to the success of

software products

Software is a Skin that Surrounds Our
Civilization

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 5

Quote due to Dr. Mark Harman

Software Faults, Errors & Failures

• Software Fault: A static defect in the software

• Software Error: An incorrect internal state that is the manifestation of

some fault

• Software Failure: External, incorrect behavior with respect to the

requirements or other description of the expected behavior

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 6

Faults in software are equivalent to design mistakes in hardware.

Software does not degrade.

Fault and Failure Example

•A patient gives a doctor a list of symptoms
• Failures

•The doctor tries to diagnose the root cause, the ailment
• Fault

•The doctor may look for anomalous internal conditions
(high blood pressure, irregular heartbeat, bacteria in the
blood stream)
• Errors

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 7

Most medical problems result from external attacks (bacteria,
viruses) or physical degradation as we age.

Software faults were there at the beginning and do not “appear”
when a part wears out.

A Concrete Example

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 8

public static int numZero (int [] arr)

{ // Effects: If arr is null throw NullPointerException

// else return the number of occurrences of 0 in arr

int count = 0;

for (int i = 1; i < arr.length; i++)

{

if (arr [i] == 0)

{

count++;

}

}

return count;

}

Fault: Should start

searching at 0, not 1

Test 1
[2, 7, 0]

Expected: 1
Actual: 1

Test 2
[0, 2, 7]

Expected: 1

Actual: 0

Error: i is 1, not 0, on

the first iteration
Failure: none

Error: i is 1, not 0
Error propagates to the variable count

Failure: count is 0 at the return statement

The Term Bug

• Bug is used informally

• Sometimes speakers mean fault, sometimes error, sometimes failure
… often the speaker doesn’t know what it means !

• This class will try to use words that have precise, defined, and
unambiguous meanings

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 9

BUG

“It has been just so in all of my inventions. The first

step is an intuition, and comes with a burst, then

difficulties arise—this thing gives out and [it is] then

that 'Bugs'—as such little faults and difficulties are

called—show themselves and months of intense

watching, study and labor are requisite. . .” – Thomas

Edison

“an analyzing process

must equally have been

performed in order to

furnish the Analytical

Engine with the

necessary operative data;

and that herein may also

lie a possible source of

error. Granted that the

actual mechanism is

unerring in its processes,

the cards may give it

wrong orders. ” – Ada,

Lovelace (notes on Babbage’s

Analytical Engine)

Spectacular Software Failures

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 10

Intel’s Pentium FDIV fault : Public relations
nightmare

Mars Polar Lander

crash site?

Ariane 5:

exception-handling

bug :

forced self

destruct on maiden

flight (64-bit to 16-bit

conversion: about

370 million $ lost)

We need our software to be
dependable

Testing is one way to assess

dependability

NASA’s Mars lander: September
1999, crashed due to a units
integration fault

Ariane 5 explosion : Millions of $$

Spectacular Software Failures (Cont’d)

• THERAC-25 radiation machine : Poor testing of safety-critical software can cost
lives : 3 patients were killed

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 11

THERAC-25 design

Northeast Blackout of 2003

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 12

Affected 10 million

people in Ontario,

Canada

Affected 40 million

people in 8 US states

Financial losses of

$6 Billion USD

508 generating units

and 256 power plants

shut down

The alarm system in the energy management system failed due to a software

error and operators were not informed of the power overload in the system.

Costly Software Failures

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 13

NIST report, “The Economic Impacts of Inadequate
Infrastructure for Software Testing” (2002)

– Inadequate software testing costs the US alone between $22 and
$59 billion annually

– Better approaches could cut this amount in half

Huge losses due to web application failures

– Financial services : $6.5 million per hour (just in USA!)

– Credit card sales applications : $2.4 million per hour (in USA)

In Dec 2006, amazon.com’s BOGO offer turned into a
double discount

2007 : Symantec says that most security vulnerabilities are
due to faulty software

World-wide monetary loss due to poor software is staggering

Spectacular software failures

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 14

• Healthcare website: Crashed repeatedly
on launch—never load tested

Software testers try to find faults before

the faults find users

• Boeing A220: Engines failed after software
update allowed excessive vibrations

• Toyota brakes: Dozens dead, thousands of crashes

• Northeast blackout: 50 million people, $6
billion USD lost … alarm system failed

• Boeing 737 Max: Crashed due to overly
aggressive software flight overrides (MCAS)

Testing in the 21st Century

• More safety critical, real-time software

• Embedded software is ubiquitous … check your pockets

• Enterprise applications means bigger programs, more users

• Paradoxically, free software increases our expectations !

• Security is now all about software faults
• Secure software is reliable software

• The web offers a new deployment platform
• Very competitive and very available to more users

• Web apps are distributed

• Web apps must be highly reliable

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 15

The industry desperately needs our inventions!

The True Cost of Software Failure

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 16

Fail watch analyzed news articles for 2016

• 606 reported software failures

• Impacted half the world’s population

• Cost a combined $1.7 trillion US dollars

Poor software is a significant drag

on the world’s economy

Not to mention frustrating

What Does This Mean?

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 17

Software testing is getting more important …

What are we trying to do when we test?

What are our goals?

Validation & Verification (IEEE)

•Validation:The process of evaluating software at the end of
software development to ensure compliance with intended
usage.

•Verification:The process of determining whether the
products of a given phase of the software development
process fulfill the requirements established during the
previous phase.

IV&V stands for “independent verification and
validation”

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 18

Testing Goals Based on Test Process Maturity

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 19

▪ Level 0: There’s no difference between testing and
debugging

▪ Level 1: The purpose of testing is to show correctness

▪ Level 2: The purpose of testing is to show that the
software doesn’t work.

▪ Level 3: The purpose of testing is not to prove anything
specific, but to reduce the risk of using the software.

▪ Level 4: Testing is a mental discipline that helps all IT
professionals develop higher quality software.

Level 0 Thinking

•Testing is the same as debugging

•Does not distinguish between incorrect behavior
and mistakes in the program

•Does not help develop software that is reliable or
safe

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 20

This is what we teach undergraduate CS majors

Level 1 Thinking

•Purpose is to show correctness

•Correctness is impossible to achieve

•What do we know if no failures?
• Good software or bad tests?

•Test engineers have no:
• Strict goal

• Real stopping rule

• Formal test technique

• Test managers are powerless

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 21

This is what hardware engineers often expect

Level 2 Thinking

•Purpose is to show failures

•Looking for failures is a negative activity

•Puts testers and developers into an adversarial
relationship

•What if there are no failures?

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 22

This describes most software companies.

How can we move to a team approach??

Level 3 Thinking

•Testing can only show the presence of failures

•Whenever we use software, we incur some risk

•Risk may be small and consequences unimportant

•Risk may be great and consequences catastrophic

•Testers and developers cooperate to reduce risk

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 23

This describes a few “enlightened” software companies

Level 4 Thinking

A mental discipline that increases quality

•Testing is only one way to increase quality

•Test engineers can become technical leaders of the project

•Primary responsibility to measure and improve software
quality

•Their expertise should help the developers

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 24

This is the way “traditional” engineering works

Where Are You?

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 25

Are you at level 0, 1, or 2 ?

Is your organization at work at level 0, 1,

or 2 ?

Or 3?

We hope to teach you to become “change

agents” in your workplace …

Advocates for level 4 thinking

Tactical Goals : Why Each Test ?

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 26

Written test objectives and requirements must be
documented

What are your planned coverage levels?

How much testing is enough?

Common objective – spend the budget … test
until the ship-date …

– Sometimes called the “date criterion”

If you don’t know why you’re conducting
each test, it won’t be very helpful

Here! Test This!

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 27

MicroSteff – big

software system

for the mac

V.1.5.1 Jan/2007

Verdatim
DataLife
MF2-HD

1.44 MB
Big software program

Jan/2011

Offutt’s first “professional” job

A stack of computer printouts—and no documentation

Why Each Test?

•1980: “The software shall be easily maintainable”

•Threshold reliability requirements?

•What fact does each test try to verify?

•Requirements definition teams need testers!

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 28

If you don’t start planning for each test when the
functional requirements are formed, you’ll never
know why you’re conducting the test

Cost of Not Testing

•Testing is the most time consuming and
expensive part of software development

•Not testing is even more expensive

•If we have too little testing effort early, the cost of
testing increases

•Planning for testing after development is
prohibitively expensive

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 29

Poor Program Managers might say:
“Testing is too expensive.”

Cost of Late Testing

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 30

60

50

40

30

20

10

0

Fault origin (%)

Fault detection (%)

Unit cost (X)

Software Engineering Institute; Carnegie Mellon University; Handbook CMU/SEI-96-HB-002

Assume $1000 unit cost, per fault, 100 faults

Summary: Why Do We Test Software?

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt 31

A tester’s goal is to eliminate faults as early

as possible

• Improve quality

• Reduce cost

• Preserve customer satisfaction

Software Testing Taxonomy and Classification

© Zakeri 32

• My proposed classification for software testing (version 1.0)

This course

Lecture Topic Tools

L01-L04
Introduction: Why test, Type of tests, Test

automation, and Agile test
JUnit, NUnit

L05-L09
Functional testing (Verification), Criteria-

Based Testing

Graph Coverage, Data Flow

Coverage, Domain Coverage, CodA

L10

Automated test generation (Symbolic

Execution, Concolic Execution, and Taint

analysis, Search-based testing)

CREST, CROWN, KLEE, JDART,

Triton, EvoSuite, Randoop

L11
GUI (Desktop and Web Applications)

testing
Selenium, Katalon Studio, GUITAR,

L12 Performance testing (Load, Stress) JMeter

L13 Security (penetration) testing Burp Suite,Acunetix

L14 Negative testing (Fuzzing) AFL, Peach, FileFuzz, DeepFuzz

Introduction to Software Testing, Edition 2 (Ch 1) © Zakeri 33

References

© Zakeri 34

• [1] Ammann, P., & Offutt, J. (2016). Introduction to software testing.
Cambridge University Press. https://doi.org/DOI: 10.1017/9781316771273

References

© Ammann & Offutt 35

• [2], [3]

Grading policy

❑ Exams (50% or 10 out of 20)

❑ HWs (20% or 4 out of 20)

❑ Presentations --- tool demonstration (20% or 4 out of 20)

❑ Slide, Codes, Reports.

❑ Class activity (10% or 2 out of 20)

❑ Extra works ([-1, 2+))

❑ (Course slides, questions with solutions)

© Zakeri 36

Problem-based Learning

•Traditional Teaching
•Professor → slides/Blackboard

•Teaching Assistance → Solve practical

•Problem Based Learning (PBL)
•More Student-Centric

•Professor proposes a problem

•Students explore the solution space

•Conditions:
• Number of students

© Zakeri 37

Stay hungry stay foolish

© Zakeri 38

