

Proposal for

Source Code Automated Refactoring Toolkit (CodART)

Morteza Zakeri†

† Ph.D. Student, Iran University of Science and Technology, Tehran, Iran (m-zakeri@live.com).

Version 0.1.0 (8 November 2020)

Abstract— Software refactoring is performed by changing the software structure without modifying its external behavior.

Many software quality attributes can be enhanced through the source code refactoring, such as reusability, flexibility,

understandability, and testability. Refactoring engines are tools that automate the application of refactorings: first, the

user chooses a refactoring to apply, then the engine checks if the transformation is safe, and if so, transforms the program.

Refactoring engines are a key component of modern Integrated Development Environments (IDEs), and programmers

rely on them to perform refactorings. In this project, an open-source software toolkit for refactoring Java source codes,

namely CodART, will be developed. ANTLR parser generator is used to create and modify the program syntax-tree and

produce the refactored version of the program. To the best of our knowledge, CodART is the first open-source refactoring

toolkit based on ANTLR.

Index Terms: Software refactoring, refactoring engine, search-based refactoring, ANTLR, Java.

1 Introduction

Refactoring is a behavior-preserving program transformation that improves the design of a program. Refactoring engines

are tools that automate the application of refactorings. The programmer need only select which refactoring to apply, and

the engine will automatically check the preconditions and apply the transformations across the entire program if the

preconditions are satisfied. Refactoring is gaining popularity, as evidenced by the inclusion of refactoring engines in

modern IDEs such as IntelliJ IDEA1, Eclipse2 , or NetBeans3 for Java.

Considering the EncapsulateField refactoring as an illustrative example. This refactoring replaces all references to a field

with accesses through setter and getter methods. The EncapsulateField refactoring takes as input the name of the field to

encapsulate and the names of the new getter and setter methods. It performs the following transformations:

• creates a public getter method that returns the field's value

• creates a public setter method that updates the field's value

to a given parameter's value

• replaces all field reads with calls to the getter method

• replaces all field writes with calls to the setter method

• changes the field's access modifier to private

The EncapsulateField refactoring checks several preconditions, including that the code does not already contain accessor

methods and that these methods are applicable to the expressions in which the field appears. Figure 1 shows a sample

program before and after encapsulating the field f into the getF and setF methods.

Figure 1. Example EncapsulateField refactoring

1 https://www.jetbrains.com/idea/

2 http://www.eclipse.org

3 http://www.netbeans.org

mailto:m-zakeri@live.com
https://www.jetbrains.com/idea/
http://www.eclipse.org/
http://www.netbeans.org/

 Source Code Automated Refactoring Toolkit (CodART), M. Zakeri 2

Refactoring engines must be reliable. A fault in a refactoring engine can silently introduce bugs in the refactored program

and lead to challenging debugging sessions. If the original program compiles, but the refactored program does not, the

refactoring is obviously incorrect and can be easily undone. However, if the refactoring engine erroneously produces a

refactored program that compiles but does not preserve the semantics of the original program, this can have severe

consequences.

To perform refactoring correctly, the tool has to operate on the syntax tree of the code, not on the text. Manipulating the

syntax tree is much more reliable to preserve what the code is doing. Refactoring is not just understanding and updating

the syntax tree. The tool also needs to figure out how to rerender the code into text back in the editor view, called code

transformation. All in all, implementing decent refactoring is a challenging programming exercise, required compiler

knowledge.

In this project, we want to develop CodART, a toolkit for applying a given refactoring on the source code and obtain the

refactored code. To this aim, we will use ANTLR [1] to generate and modify the program syntax tree. CodART

development consists of two phases: In the first phase, 42 common refactoring operations will be automated, and in the

second phase, an algorithm to find the best sequence of refactorings to apply on a given software will be developed using

many-objective search-based approaches.

Section 2 describes the refactoring operations in detail. Section 3 discusses the search-based refactoring and many-

objective evolutionary algorithms. Section 4 explains the implementation phases, dataset, developers' team arrangement,

and grading policy. Conclusion and future works are discussed in Section 5.

2 Refactoring operations

This section explains the refactoring operations used in the project. A catalog of 72 refactoring operations has been

proposed by Fowler [2]. Each refactoring operation has a definition and is clearly specified by the entities in which it is

involved and the role of each. Table 1 describes the desirable refactorings, which we aim to automate them. It worth

noting that not all of these refactoring operations are introduced by Fowler [2]. A concrete example for most of the

refactoring operations in the table is available at https://refactoring.com/catalog/. Examples of other refactorings can be

found at https://refactoring.guru/refactoring/techniques and https://sourcemaking.com/refactoring/refactorings.

Table 1. Refactoring operations

Refactoring Definition Entities Roles

Move class Move a class from a package to another package

class

source package, target package

moved class

Move method Move a method from a class to another. class

method

source class, target class

moved method

Merge packages Merge the elements of a set of packages in

one of them

package source package, target package

Extract/Split package Add a package to compose the elements of

another package

package source package, target package

Extract class Create a new class and move fields and

methods from the old class to the new one

class

method

source class, new class

moved methods

Extract method Extract a code fragment into a method method

statement

source method, new method

moved statements

Inline class Move all features of a class in another one

and remove it

class source class, target class

Move field Move a field from a class to another class

field

source class, target class

field

Push down field Move a field of a superclass to a subclass class

field

super class, sub classes

move field

Push down method Move a method of a superclass to a

subclass

class

method

super class, sub classes

moved method

Pull up field Move a field from subclasses to the

superclass

class

field

sub classes, super class

moved field

Pull up method Move a method from subclasses to the

superclass

class

method

sub classes, super class

moved method

Increase field visibility Increase the visibility of a field from

public to protected, protected to package

or package to private

Decrease field visibility Decrease the visibility of a field from

private to package, package to protected or

protected to public

Make field final Make a non-final field final

Make field non-final Make a final field non-final

Make field static Make a non-static field static

https://refactoring.com/catalog/
https://refactoring.guru/refactoring/techniques
https://sourcemaking.com/refactoring/refactorings

 Source Code Automated Refactoring Toolkit (CodART), M. Zakeri 3

Make field non-static Make a static field non-static

Remove field Remove a field from a class

Increase method

visibility

Increase the visibility of a method from

public to protected, protected to package

or package to private

Decrease method

visibility

Decrease the visibility of a method from

private to package, package to protected or

protected to public

Make method final Make a non-final method final

Make method non-final Make a final method non-final

Make method static Make a non-static method static

Make method non- static Make a static method non-static

Remove method Remove a method from a class

Make class-final Make a non-final class final

Make class non-final Make a final class non-final

Make class abstract Change a concrete class to abstract

Make class concrete Change an abstract class to concrete

Extract subclass Create a subclass for a set of features

Extract interface Extract methods of a class into an interface

Inline method Move the body of a method into its callers

and remove the method

Collapse hierarchy Merge a superclass and a subclass

Remove control flag Replace control flag with break

Replace nested

conditional with guard

clauses

Replace nested conditional with guard

clauses

Replace constructor

with factory function

Replace constructor with factory function

Replace exception with

test

Replace exception with precheck

Rename field Rename a field

Rename method Rename a method

Rename class Rename a class

Rename package Rename a package

3 Search-based refactoring

After refactoring operations were automated, we must decide which refactorings souled be performed in order to elevate

software quality. The concern about using refactoring operations in Table 1 is whether each one of them has a positive

impact on the refactored code quality or not. Finding the right sequence of refactorings to be applied in a software artifact

is considered a challenging task since there is a wide range of refactorings. The ideal sequence is, therefore, must correlate

to different quality attributes to be improved as a result of applying refactorings.

Finding the best refactoring sequence is an optimization problem that can be solved by search techniques in the field

known as Search-Based Software Engineering (SBSE) [3]. In this approach, refactorings are applied stochastically to the

original software solution, and then the software is measured using a fitness function consisting of one or more software

metrics. There are various metric suites available to measure characteristics like cohesion and coupling, but different

metrics measure the software in different ways, and thus how they are applied will have a different effect on the outcome.

The second phase of this project is to use a many-objective search algorithm to find the best sequence of refactoring on a

given project. Recently, many-objective SBSE approach for refactoring [3]–[5] and remodularization, regrouping a set of

classes C in terms of packages P, [6] has gained more attention due to its ability to find the best sequence of refactoring

operations which is led to the improvement in software quality. Therefore, we first focus on implementing the proposed

approach approaches in [3], [5], [6] as fundamental works in this area. Then, we will improve their approach. As a new

contribution, we add new refactoring operations and new objective functions to improve the quality attribute of the

software. We also evaluate our method on the new software projects which are not used in previous works.

4 Implementation

This section describes two phases of the project: Refactoring automation with ANTLR parser generator and refactoring

recommendation through many-objective search-based refactoring.

4.1

Each refactoring operation in Table 1 is implemented as an API, with the refactoring name. The API receives the involved

entities with their refactoring roles and other required data as inputs, checks the feasibility of the refactoring using

refactoring preconditions described in [2], performs the refactoring if it is feasible, and returns the refactored code or

return null if the refactoring is not feasible.

 Source Code Automated Refactoring Toolkit (CodART), M. Zakeri 4

The core of our refactoring engine is a syntax-tree modification algorithm. Fundamentally, ANTLR is used to generate

and modify the syntax-tree of a given program. Each refactoring API is an ANTLR Listener or visitor class, which required

argument by its constructor and preform refactoring when call by parse-tree walker object. The refactoring target and

input parameters must read from a configuration file, which can be expressed in JSON, XML, or YAML formats.

The key to use ANTLR for refactoring tasks is the TokenStreamRewriter object that knows how to give altered views of

a token stream without actually modifying the stream. It treats all of the manipulation methods as "instructions" and

queues them up for lazy execution when traversing the token stream to render it back as text. The rewriter executes those

instructions every time we call getText(). This strategy is very effective for the general problem of source code

instrumentation or refactoring. The TokenStreamRewriter is a powerful and extremely efficient means of manipulating a

token stream.

4.2 Refactoring recommendation

A solution consists of a sequence of n refactoring operations applied to different code elements in the source code to fix.

In order to represent a candidate solution (individual/chromosome), we use a vector-based representation. Each vector’s

dimension represents a refactoring operation where the order of applying these refactoring operations corresponds to their

positions in the vector. The initial population is generated by randomly assigning a sequence of refactorings to some code

fragments. Each generated refactoring solution is executed on the software system S. Once all required data is computed,

the solution is evaluated based on the quality of the resulting design.

4.3 Dataset

Refactorings are applied to the software systems listed in Table 2. Datasets may change in the future. We use a set of

well-known open-source Java projects that have been investigated in previous works and also add new Java software

projects.

Table 2. Software systems refactored in this project

System Release Previous releases Domain Reference

Xerces-J v2.7.0 software packages for parsing XML [3], [6]

Azureus v2.3.0.6 Java BitTorrent client for handling

multiple torrents

[3]

ArgoUML v0.26 and v0.3 UML tool for object-oriented design [3]

Apache Ant v1.5.0 and v1.7.0 Java build tool and library [3]

GanttProject v1.10.2 and v1.11.1 project management [3], [6], [5]

JHotDraw v6.1 and v6.0b1 and v5.3 graphics tool [6], [5], [4]

JFreeChart v1.0.9 chart tool [6]

Beaver v0.9.11 and v0.9.8 parser generator [5], [4]

Apache XML-RPC v3.1.1 B2B communications [5], [4]

JRDF v0.3.4.3 semantic web (resource management) [5]

XOM v1.2.1 XML tool [5]

JSON v1.1 software packages for parsing JSON [4]

JFlex v1.4.1 lexical analyzer generator [4]

Mango v [4]

Weka v3.9 data mining tool New

ANTLR v4.8.0 parser generator New

4.4 Agenda

Students must form groups of up to three persons, and each group must implement several refactoring operations. The

exact list of refactoring will be assigned to each group subsequently. The refactoring operations in Table 1 may update

during the semester.

As an example of refactoring automation, we have implemented the EncapsulateField refactoring, illustrated in Figure 1.

A naïve implementation is available on the project official Github page at https://m-zakeri.github.io/CodART. In addition,

26 refactoring operations in Table 1 have been implemented by MultiRefactor4 [7] based on RECODER5, three of them

have been implemented by JDeodrant [8], and other operations have been automated in [3], [6]. RECODER extracts a

model of the code that can be used to analyze and modify the code before the changes are applied and written to file. The

tool takes Java source code as input and will output the modified source code to a specified folder. The input must be

fully compilable and must be accompanied by any necessary library files as compressed jar files.

4.5 Grading policy

Table 3 shows the grading policy. Grading policy may change in the future.

4 https://github.com/mmohan01/MultiRefactor

5 http://sourceforge.net/projects/recoder

https://m-zakeri.github.io/CodART
https://github.com/mmohan01/MultiRefactor
http://sourceforge.net/projects/recoder

 Source Code Automated Refactoring Toolkit (CodART), M. Zakeri 5

Table 3. Grading policy

Action Score (100)

Refactoring operations implementation 40

Search-based refactoring recommendation 30

Evaluation of the tool on a real dataset 20

Documentations 10

Improving the state-of-the-arts papers 30+ (extra bonus)

5 Conclusion

Software refactoring is used to reduce the costs and risks of software evolution. Automated software refactoring tools can

reduce risks caused by manual refactoring, improve efficiency, and reduce software refactoring difficulties. Researchers

have made great efforts to research how to implement and improve automated software refactoring tools. However, the

results of automated refactoring tools often deviate from the intentions of the implementer. The goal of this project is to

propose an open-source refactoring engine and toolkit that can automatically find the best refactoring sequence required

for a given software and apply this sequence. Since the tool is work based on compiler principles, it is reliable to be used

in practice and has many benefits for software developer companies. Students who participate in the project will learn

compiler techniques such as lexing, parsing, source code analysis, and source code transformation. They also learn about

software refactoring, search-based software engineering, optimization, software quality, and object-orient metrics.

Conflict of interest

The project is supported by the IUST Reverse Engineering Research Laboratory6. Interested students may continue

working on this project to fulfill their final bachelor and master thesis or their internship.

References

[1] T. Parr and K. Fisher, “LL(*): the foundation of the ANTLR parser generator,” Proc. 32nd ACM SIGPLAN Conf.

Program. Lang. Des. Implement., pp. 425–436, 2011.

[2] M. K. B. Fowler, Refactoring: improving the design of existing code, Second Edi. Addison-Wesley, 2018.

[3] M. W. Mkaouer, M. Kessentini, S. Bechikh, M. Ó Cinnéide, and K. Deb, “On the use of many quality attributes

for software refactoring: a many-objective search-based software engineering approach,” Empir. Softw. Eng., vol.

21, no. 6, pp. 2503–2545, Dec. 2016.

[4] M. Mohan, D. Greer, and P. McMullan, “Technical debt reduction using search based automated refactoring,” J.

Syst. Softw., vol. 120, pp. 183–194, Oct. 2016.

[5] M. Mohan and D. Greer, “Using a many-objective approach to investigate automated refactoring,” Inf. Softw.

Technol., vol. 112, pp. 83–101, Aug. 2019.

[6] W. Mkaouer et al., “Many-Objective Software Remodularization Using NSGA-III,” ACM Trans. Softw. Eng.

Methodol., vol. 24, no. 3, pp. 1–45, May 2015.

[7] M. Mohan and D. Greer, “MultiRefactor: automated refactoring to improve software quality,” 2017, pp. 556–

572.

[8] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “Ten years of JDeodorant: lessons learned from the hunt for

smells,” in 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering

(SANER), 2018, pp. 4–14.

6 http://reverse.iust.ac.ir/

http://reverse.iust.ac.ir/

	1 Introduction
	2 Refactoring operations
	3 Search-based refactoring
	4 Implementation
	4.1
	4.2 Refactoring recommendation
	4.3 Dataset
	4.4 Agenda
	4.5 Grading policy

	5 Conclusion

