
Algorithms Analysis and Design Project Topics
Instructor: Morteza Zakeri Spring 2024

Final Project

The  final  project  draws  together  concepts  from  across  the  quarter:  graph 
algorithms,  divide-and-conquer  algorithms,  randomized  algorithms,  greedy 
algorithms,  dynamic  programming,  and  intractability.   The  problems  here  are 
designed to combine these topics in new ways so that you can appreciate how 
versatile a skillset you've acquired this quarter.

Choose and answer one of the six algorithmic problems given here. Each problem 
may combine two or three different techniques from the course, so by answering 
two of the three problems you will have demonstrated a mastery of four of the six 
topics  we  have  covered.  You  will  not  improve  your  overall  score  by  submitting 
answers to multiple problems – if you do, we will only grade the first two – but you 
are welcome to answer all three problems and submit your answers to the two you 
are most comfortable with.

The project must be completed in groups of at most four students. While we permit 
collaboration  on  the  problem  sets,  group  members  must  not  collaborate  with 
anyone else on this project. You can ask the course staff clarifying questions about 
the problems if you are unsure what they are asking, but we will not provide hints, 
check your work, etc.

You must not consult any outside resources when completing this project. You may 
only  refer  to  materials  on  the  course  website,  the  book  Algorithm  Design by 
Kleinberg and Tardos, notes that you yourself have taken over the course of the 
class, lecture videos, and your own graded problem sets. For example, you  must 
not use a search engine to look up anything related to any of the problems in this 
project, nor should you look at any other student's notes.

You  must  submit  your  answers  to  the  elearn portal  containing  the  following 
artifacts:

1. The implementation of all required algorithms (any programming language)
2. Documentation  (description  of  proposed  implementation,  time  and  space 

complexity, answer to questions, teamwork, etc.)
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3. A  recorded  presentation  (15-20  minutes  demonstrating  the  execution  of  the 
developed  programs  as  well  as  describing  your  solutions  and  algorithmic 
decisions).  

This final project is worth 20-25% of your grade in this course. The final project's 
due  date  is  one  week  after  the  final  exam  was  held.  No  late  submissions  are 
accepted.

It has been a pleasure teaching Algorithm Analysis and Design this quarter. 
Best of luck with the final project!

Final Project Topics

Topic 1: Multicolored Spanning Trees
Suppose that you have a connected, undirected graph G = (V, E) where each edge is 
colored either red or blue.  Given a number  k, you are interested in determining 
whether there is some spanning tree of G that contains exactly k blue edges.

i. Design  a  polynomial-time  algorithm  that  finds  a  spanning  tree  of  G 
containing the minimum possible number of blue edges.  Then:

• Describe your algorithm.

• Prove  that  your  algorithm  finds  a  spanning  tree  of  G containing  the 
minimum possible number of blue edges.

• Prove that your algorithm runs in polynomial time.

ii. Design an algorithm that finds a spanning tree of G containing the maximum 
possible number of blue edges.  Then:

• Describe your algorithm.

• Prove  that  your  algorithm  finds  a  spanning  tree  of  G containing  the 
maximum possible number of blue edges.
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• Prove that your algorithm runs in polynomial time.

iii. Suppose  T₁ and  T₂ are spanning trees of  G where  T₁ contains  k₁ blue edges 
and T₂ contains k₂ > k₁ blue edges.  Prove there must be some spanning tree T 
of G containing exactly k₁ + 1 blue edges.

iv. Design an algorithm that, given a number k, determines whether there is a 
spanning tree of  G that contains exactly  k blue edges.  Note that you don't 
need to find such a spanning tree; you just need to determine whether one 
exists.  Your algorithm should run in time polynomial in n and m (the number 
of nodes and edges in G), but not in k.  Then:

• Describe your algorithm.

• Briefly justify why your algorithm determines whether there is a spanning 
tree of G containing exactly k blue edges.  You don't need to write a formal 
proof here but should give a one-paragraph justification as to why your 
algorithm works.

• Briefly justify why your algorithm runs in time polynomial in n and m.



4 / 15

Topic 2: Evaluating NAND Trees
A NAND tree is a complete binary tree with the following properties:

• Each leaf node is labeled either 0 or 1.

• All internal nodes are NAND gates. A NAND gate is a logic gate that takes in 
two inputs and evaluates to 0 if both its inputs are 1 and to 1 if either input is 
0.

We can evaluate a NAND tree by computing the value of the top-level NAND gate in 
the tree, which will evaluate either to 0 or to 1. (If the tree is a single leaf, the tree 
evaluates to the value of  that  leaf.)  For  example,  the left  and right trees below 
evaluate to 1; the middle tree evaluates to 0:

Here is a simple recursive algorithm for evaluating a NAND tree:

• If the tree is a single leaf node, return the value of that node.

• Otherwise, recursively evaluate the left and right subtrees, then apply the 
NAND operator to both of those values.

This algorithm takes Θ(n) time to evaluate a NAND tree with n-leaf nodes. We can 
improve this algorithm using short-circuiting.  If one subtree of node v evaluates to 
0, then v must evaluate to 1 because 0 NAND 0 = 1 and 0 NAND 1 = 1. Therefore, we 
don't need to evaluate v's other subtree. This gives the following algorithm, which 
we'll call the left-first algorithm:

• If the tree is a single leaf node, return the value of that node.
• Otherwise:
• Recursively evaluate the left subtree.
• If it evaluates to 0, return 1.
• Otherwise, recursively evaluate the right subtree.
• If it evaluates to 0, return 1; otherwise, return 0.

11 0100 01111011
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In  many  cases,  the  left-first  algorithm  runs  faster  than  the  Θ(n)-time  naïve 
algorithm.  However, it is possible to construct NAND trees for which the left-first 
algorithm runs in time Θ(n).

i. Design an algorithm that creates a NAND tree T with n = 2k leaf nodes such 
that  the  left-first  algorithm  never  short-circuits  when  evaluating  T.   Your 
algorithm should run in time polynomial in n.  Then:

• Describe your algorithm.

• Prove that your algorithm produces a tree  T with  n leaves such that the 
left-first algorithm never short-circuits when evaluating T.

• Prove your algorithm runs in time polynomial in n.

Since  the  left-first  algorithm  never  short-circuits  on  inputs  produced  by  your 
algorithm, the left-first algorithm has a worst-case runtime of Θ(n).

More generally, any deterministic algorithm for evaluating a NAND tree will have at 
least one input that causes it to run in Θ(n) time, but you don't need to prove this.

Despite  the  Θ(n)  worst-case  for  deterministic  evaluation  algorithms,  there  is  a 
simple randomized algorithm for evaluating NAND trees that, on expectation, does 
less than Θ(n)  work.   The idea is simple:  use the same algorithm as above, but 
choose which subtree to  evaluate  first  uniformly  at  random.  We'll  call  this  the 
random-first algorithm. More concretely:

• If the tree is a single leaf node, return the value of that node.
• Otherwise:
• Choose one of the subtrees of the root at random and evaluate it.
• If the value is 0, return 1.
• Otherwise, recursively evaluate the other subtree.
• If the value is 0, return 1; otherwise return 0. 

To  determine  the  runtime  of  the  random-first  algorithm,  we  will  introduce  two 
recurrence  relations.   Let  T₀(n)  be  the  expected runtime  of  the  random-first 
algorithm on a tree with n leaf nodes assuming the root evaluates to 0. Let T₁(n) be 
the  expected runtime of  the random-first  algorithm on a tree with  n leaf  nodes 
assuming the root evaluates to 1.

ii. Prove that the following recurrence relations for T₀(n) and T₁(n) are correct:

T₀(1)  Θ(1)≤
T₀(n)  2T≤ ₁(n / 2) + Θ(1)

T₁(1)  Θ(1)≤
T₁(n)  ½T≤ ₁(n / 2) + T₀(n / 2) + Θ(1) 
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iii.  (It  turns  out  that  T₁(n)   T≤ ₀(n),  though it's  somewhat  difficult  to  formally 
establish this. Using this fact, prove that T₀(n) = O(nε) for some ε < 1. You can 
assume n = 4k for some natural number k. (Hint: Write T₀(n) in terms of itself.)

Your result from (iii) proves that the random-first algorithm has expected sublinear 
runtime on all  inputs, since T₁(n)  T≤ ₀(n) = O(nε) = o(n).  This is one of a few known 
problems where the best-randomized algorithm is more efficient on expectation 
than the best deterministic algorithm in the worst case.

The last part of this problem explores this question: what happens if  you try to 
evaluate a randomly chosen NAND tree?  The result is surprising.

Let's say a random NAND tree with n = 2k leaves is a NAND tree where each leaf is 
independently assigned a value of 0 or 1 uniformly at random.

iv.  Let P (₀  n)  denote the probability that a random NAND tree with  n leaves 
evaluates to 0 and P (₁  n) denote the probability that a random NAND tree 
with n leaves evaluates to 1. Write recurrence relations for P (₀ n) and P (₁ n) 
and briefly explain why your recurrences are correct.

The  recurrence  relations  you  came  up  with  in  (iv)  can't  be  solved  using  the 
techniques  we've  developed  in  this  course,  but  you  can  easily  write  a  short 
computer program to determine their values by writing out  n = 2k and evaluating 
the recurrence for increasing values of k.  If you do, you'll find that when k  15, ≥ P0 
(n) is extremely close to 1 if k is even and P1 ( n) is extremely close to 1 if k is odd. 
Consequently, the algorithm “return the height of the tree modulo 2” returns the 
right answer with high probability in time Θ(log  n), even though it never actually 
evaluates the tree!
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Topic 3: Building Roads to Connect Cities

Problem Introduction

In this problem, the goal is to build roads between some 
pairs of the given cities such that there is a path 
between any two cities and the total length of the roads 
is minimized.

Problem Description 

Task. Given  n points on a plane, connect them with segments of minimum total 
length such that there is a path between any two points. Recall that the length of 
segments with endpoints (x1 , y1 )and (x2 , y2 ) is equal to √ (x1, y1 )2+(x2 , y2 )2

Input format. The first line contains the number n of points. Each of the following n 
lines defines a point(x i , y i ).

Constraints. 1  ≤ n ≤ 200; -103  ≤ x i , y i ≤ 103   are integers.  All  points are pairwise 
different, no three points lie on the same line.

Output Format. Output the minimum total length of segments. The absolute value 
of  the  difference  between  the  answer  of  your  program  and  the  optimal  value 
should be at most 10-6. To ensure this, output your answer with at least seven digits 
after the decimal point(otherwise your answer, while being computed correctly, can 
turn out to be wrong because of rounding issues).

Time Limits.

Languag
e

C C++ Java Pytho
n

C# Haskel
l

JavaScrip
t

Ruby Scal
a

Time(sec
)

2 2 3 10 3 4 10 6 6

                                       Sample 1.

                                                      Input: 
4
0 0
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Memory limit. 512MB.             

                                                      Output:

3.000000000

An optimal way to connect these four points is shown below. Note that there exists 
other ways of connecting these points by segments of total weight 3.

           

Sample 2.

            Input:

5
0 0
0 2
1 1
3 0
3 2

            Output:

7.064495102

An optimal way to connect these five points is shown below.

0 1
1 0
1 1
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The total length here is equal to 2√2+√5+2.
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Topic 4: Computing Prime Paths and Test-Paths
Problem Introduction

Control Flow Graphs (CFGs) are essential representations of program code that help 
analyze the different execution paths within a program. In this project, we aim to 
compute  prime  paths  from  a  given  CFG.  Prime  paths  are  fundamental  in 
understanding program behavior,  identifying critical  paths,  and optimizing code. 
We will explore topics such as side-trips, detours, and execution paths to achieve 
this goal.

A control  flow  graph  (CFG) is  a  graphical  representation  of  a  program’s  basic 
blocks and their interconnections. Each basic block represents a sequence of non-
compound  statements  that  execute  together.  CFGs  are  widely  used  in  code-
checking tools, compilers, and software analysis.

Problem Description

I.  Constructing the CFG (Optional):
 Build a CFG from a given program using basic blocks.
 Identify entry and exit points in the CFG.

II.  Prime Path Computation: 
 Define prime paths as sequences of basic blocks that cover all possible 

execution paths. The exact definition is available at   
. 

 Develop an algorithm to find prime paths efficiently.
 Consider  side  trips  (additional  paths)  and  detours  (revisiting  blocks) 

during path computation.
III. Path Coverage Analysis:

 Evaluate the coverage of prime paths in the CFG.
 Investigate the impact of different paths on program behavior.

Methodology

i. CFG Construction (Optional):

Parse the program code to extract basic blocks.

Create a directed graph with basic blocks as nodes and edges representing control 
flow.

ii. Prime Path Algorithm:

Adapt existing algorithms (e.g., Floyd-Warshall, Tarjan) to find prime paths.

Handle loops, conditionals, and branching effectively.
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IV. Coverage Analysis:

Implement path traversal to validate prime paths.

Measure coverage and identify uncovered paths.

iii. Computational complexity analysis

Discuss  the  time  and  space  complexity  of  the  proposed  algorithms  using 
asymptotic notations.

Sample  outputs  are  available  at 
https://cs.gmu.edu:8443/offutt/coverage/GraphCoverage

Topic  5:  Automated  Detection  of  Design  Patterns  and  Smells  in 
Class Diagrams

Problem Description

Class  diagrams  are  fundamental  in  software  modeling,  representing  the  static 
structure of a system. In this project, we aim to develop an automated approach to 
identify common design patterns and detect code smells within class diagrams. By 
leveraging  graph-based  techniques,  we  will  analyze  the  relationships  between 
classes and uncover potential issues.

Class  diagrams  provide  a  visual  representation  of  classes,  their  attributes,  and 
associations.  Detecting design patterns (such as Singleton,  Factory Method, and 
Observer)  and identifying  code  smells  (such  as  God Classes,  Feature  Envy,  and 
Inappropriate Intimacy) in class diagrams is crucial for maintaining software quality 

.

Objectives
1. Graph Representation:

o Convert class diagrams into directed labeled graphs (DLGs).
o Define nodes (classes) and edges (associations) in the DLG.

2. Design Pattern Detection:
o Implement algorithms to recognize common design patterns.
o Explore graph traversal techniques to identify pattern structures.

3. Code Smell Identification:
o Define metrics for code smells (e.g., high coupling, low cohesion).
o Analyze the DLG to detect potential code smell instances.

4. Algorithmic Questions:
o Discuss the time and space complexity of the detection algorithms.

https://cs.gmu.edu:8443/offutt/coverage/GraphCoverage
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o Investigate trade-offs between accuracy and efficiency.
o Propose improvements or optimizations.

Methodology
1. Graph Construction:

o Parse class diagrams (UML (XMI) or other formats) to create DLGs.
o Represent classes as nodes and associations as edges.

2. Design Pattern Detection Algorithms:
o Implement algorithms for detecting common patterns (e.g., Singleton, 

Factory Method). By representing design patterns as subgraphs, you 
can use subgraph isomorphism algorithms to identify occurrences of 
these patterns in class diagrams

o Consider pattern variations and edge cases.
3. Code Smell Metrics:

o Define metrics (e.g., coupling, cohesion) based on graph properties.
o Evaluate class relationships to identify smells.

4. Evaluation and Validation:
o Apply the approach to real-world class diagrams.
o Validate results against manually labeled patterns and smells.
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Topic 6: Constrained Scheduling
Suppose you have a supercomputer that can run jobs one at a time. You have a set 
of jobs J that you need to run and want to determine the best order in which to run 
them. Not all  jobs take the same amount of time to complete; specifically, job  jk 

takes time  tk to complete. Each job must run to completion once started, so you 
can't pause or stop a job after starting it.

Certain jobs depend on results computed by other jobs, so you cannot run the jobs 
in a completely arbitrary order. Specifically, you have a DAG G = (J,  E) whose nodes 
are the jobs J and where each edge ( ji, jk) indicates that job ji must be run before job 
jk.

Under these restrictions, it's easy to schedule all the jobs as efficiently as possible: 
just topologically sort the DAG and run the jobs in that order.  Of course, there's a 
catch.   Associated with each job  j  ₖ is  a cost function  cₖ(t)  denoting the cost of 
completing job  j  ₖ at time t.  These functions are monotonically increasing, so for 
any job  jₖ and any ε > 0, we have  cₖ(t)  <  cₖ(t + ε).   Your task is to find a way of 
ordering all of the jobs on the supercomputer so that all constraints are satisfied 
and the total cost is as low as possible.  Specifically, you want to minimize

 ∑ ck ( f ( jk))
jk∈J

Where f ( jₖ) denotes the time at which job jₖ finishes.  This problem is known to be 
NP-hard.
A naïve algorithm for this problem is to try out every possible topological ordering 
of the DAG and find the ordering with the least total cost, but this algorithm can be 
incredibly slow.

i.  Prove that for all  n  0,  there is a DAG with  ≥ n nodes and Ω(n!)  topological 
orderings. This shows the naïve algorithm has worst-case runtime Ω(n!).

Fortunately,  we  can  improve  upon  the  naïve  algorithm  using  dynamic 
programming. Let's call a set S ⊆ J a feasible set iff for every jk ∈ S, if there is a path 
from ji to jk in G (i.e. jk depends on ji), then ji ∈ S. Intuitively, a feasible set is a set of 
jobs that can be scheduled without missing any prerequisites.  For example, in the 
following DAGs, the indicated nodes are feasible sets:
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For any feasible set S, let LAST(S) denote the set of all jobs jk ∈ S such that ( jk, ji) ∉ E 
for any  ji ∈ S.  In other words,  LAST(S) consists of all jobs in  S that no other jobs 
depend on. ii. (3 Points) Prove that if S is a feasible set, then S –{ j} is feasible for any 
j   ∈ LAST(S).
For any feasible set S, let OPT(S) denote the optimal cost of scheduling the jobs in 
set S.

iii. Prove that in any optimal schedule for the jobs in  S, the supercomputer is 
never idle before all jobs have been completed (i.e. until all jobs have finished 
executing, the supercomputer is always executing some job.)

iv. Write  a  recurrence  relation  for  OPT(S),  then  prove  that  your  recurrence 
relation is correct.

Given a recurrence relation for OPT(S), it's possible to find the cost of an optimal 
schedule by using the following dynamic programming algorithm:

• Let DP be a table of size 2n.

• For each subset S ⊆ J, in an appropriate order:

• If S is feasible, fill in DP[S] based on the recurrence from (iv).

• Return DP[J].
If we assume each function  cₖ can be evaluated in time O(1), then (with the right 
recurrence relation for OPT(S)) it's possible to fill each entry of DP in time O(n + m). 
It's also possible to check whether a set is feasible in time O(n + m). This means that 
the overall runtime for this algorithm is O(2n  (n +  m)), which is significantly better 
than the Ω(n!) worst-case of the naïve algorithm!
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