
Analysis and Design of
Algorithms

Greedy Algorithms (Part 2):

Counting Money and Huffman Compression

Instructor: Morteza Zakeri

Slide by: Hossein Rahmani

Modified by: Morteza Zakeri

2

Optimization Problems

3

• For most optimization problems you want to
find, not just a solution, but the best solution.

• A greedy algorithm sometimes works well for
optimization problems. It works in phases. At
each phase:

– You take the best you can get right now, without
regard for future consequences.

– You hope that by choosing a local optimum at
each step, you will end up at a global optimum.

5

Example: Counting Money

• Suppose you want to count out a certain amount of
money, using the fewest possible bills and coins

• A greedy algorithm to do this would be:
At each step, take the largest possible bill or coin that does
not overshoot
– Example: To make $6.39, you can choose:

• a $5 bill
• a $1 bill, to make $6
• a 25¢ coin, to make $6.25
• A 10¢ coin, to make $6.35
• four 1¢ coins, to make $6.39

• For US money, the greedy algorithm always gives the
optimum solution

5

Greedy Algorithm Failure

• In some (fictional) monetary system, “krons”

• come in 1 kron, 7 kron, and 10 kron coins
• Using a greedy algorithm to count out 15 krons, you

would get
– A 10 kron piece

– Five 1 kron pieces, for a total of 15 krons

– This requires six coins

• A better solution would be to use two 7 kron
pieces and one 1 kron piece
– This only requires three coins

• The greedy algorithm results in a solution, but NOT
in an optimal solution

6

A Scheduling Problem

18 11 6

15 14 5

20 10 3

• You have to run nine jobs, with running times of 3, 5, 6, 10, 11, 14, 15, 18,
and 20 minutes.

• You have three processors on which you can run these jobs.

• You decide to do the longest-running jobs first, on whatever processor is
available.

P1

P2

P3

• Time to completion: 18 + 11 + 6 = 35 minutes

• This solution isn’t bad, but we might be able to do better

7

Another Approach

6 14 20

5 11 18

3 10 15

• What would be the result if you ran the shortest job first?

• Again, the running times are 3, 5, 6, 10, 11, 14, 15, 18, and 20 minutes

P1

P2

P3

• That wasn’t such a good idea; time to completion is now
6 + 14 + 20 = 40 minutes

• Note, however, that the greedy algorithm itself is fast

– All we had to do at each stage was pick the minimum or maximum

8

An Optimum Solution

• Better solutions do exist:

• How do we find such a solution?

– One way: Try all possible assignments of jobs to processors

– Unfortunately, this approach can take exponential time

20

18 11 5

15 10 6 3

14P1

P2

P3

9

Compression

• Definition

– Reduce size of data

(number of bits needed to represent data)

• Benefits

– Reduce storage needed

– Reduce transmission cost / bandwidth

10

Sources of Compressibility

• Redundancy

– Recognize repeating patterns

– Exploit using

• Dictionary

• Variable length encoding

• Human perception

– Less sensitive to some information

– Can discard less important data

11

Types of Compression

• Lossless

– Preserves all information

– Exploits redundancy in data

– Applied to general data

• Lossy

– May lose some information

– Exploits redundancy & human perception

– Applied to audio, image, video

12

Effectiveness of Compression

• Metrics

– Bits per byte (8 bits)

• 2 bits / byte ¼ original size

• 8 bits / byte no compression

– Percentage

• 75% compression ¼ original size

13

Effectiveness of Compression

• Depends on data

– Random data hard

• Example: 1001110100 ?

– Organized data easy

• Example: 1111111111 110

• Corollary

– No universally best compression algorithm

14

Effectiveness of Compression

• Lossless Compression is not always possible

– If compression is always possible (alternative
view)

• Compress file (reduce size by 1 bit)

• Recompress output

• Repeat (until we can store data with 0 bits)

15

Lossless Compression Techniques

• LZW (Lempel-Ziv-Welch) compression

– Build pattern dictionary

– Replace patterns with index into dictionary

• Run length encoding

– Find & compress repetitive sequences

• Huffman codes

– Use variable length codes based on frequency

16

Huffman Code
• Approach

– Variable length encoding of symbols

– Exploit statistical frequency of symbols

– Efficient when symbol probabilities vary widely

• Principle

– Use fewer bits to represent frequent symbols

– Use more bits to represent infrequent symbols

A A B A

A A B A

17

Huffman Code Example

• Expected size
– Original 1/82 + 1/42 + 1/22 + 1/82 = 2 bits / symbol

– Huffman 1/83 + 1/42 + 1/21 + 1/83 = 1.75 bits / symbol

Symbol A B C D

Frequency 13% 25% 50% 12%

Original

Encoding

00 01 10 11

2 bits 2 bits 2 bits 2 bits

Huffman

Encoding

110 10 0 111

3 bits 2 bits 1 bit 3 bits

18

Huffman Code Data Structures

• Binary (Huffman) tree

– Represents Huffman code

– Edge code (0 or 1)

– Leaf symbol

– Path to leaf encoding

– Example

• A = “110”, B = “10”, C = “0” 1

1 0

0

D

C

B

A

01

19

Huffman Code Algorithm Overview

• Encoding

– Calculate frequency of symbols in file

– Create binary tree representing “best” encoding

– Use binary tree to encode compressed file

• For each symbol, output path from root to leaf

• Size of encoding = length of path

– Save binary tree

20

Huffman Code – Creating Tree

• Algorithm
– Place each symbol in leaf

• Weight of leaf = symbol frequency

– Select two trees L and R (initially leafs)
• Such that L, R have lowest frequencies in tree

– Create new (internal) node
• Left child L

• Right child R

• New frequency frequency(L) + frequency(R)

– Repeat until all nodes merged into one tree

21

Huffman Tree Construction 1

3

C E H I

5 8 2 7

A

22

Huffman Tree Construction 2

C E I

5 8 7

5

A H

3 2

23

Huffman Tree Construction 3

3

5

2

E I

8 7

5

10

A

C

H

24

Huffman Tree Construction 4

3

5

2

5

10

15

E I

8 7

A

C

H

25

Huffman Tree Construction 5

3

5 8

2

75

10 15

25
1

1

1

1

0

0

0

0

A

C E

H

I

E = 01

I = 00

C = 10

A = 111
H = 110

26

Huffman Coding Example

• Huffman code

• Input
– ACE

• Output
– (111)(10)(01) = 1111001

E = 01

I = 00

C = 10

A = 111
H = 110

27

Huffman Code Algorithm Overview

• Decoding

– Read compressed file & binary tree

– Use binary tree to decode file

• Follow path from root to leaf

28

Huffman Decoding 1

3

5 8

2

75

10 15

25

1

1

1

1

0

0

0

0

A

C E

H

I

1111001

29

Huffman Decoding 2

3

5 8

2

75

10 15

25
1

1

1

1

0

0

0

0

A

C E

H

I

1111001

30

Huffman Decoding 3

3

5 8

2

75

10 15

25
1

1

1

1

0

0

0

0

A

C E

H

I

1111001

A

31

Huffman Decoding 4

3

5 8

2

75

10 15

25
1

1

1

1

0

0

0

0

A

C E

H

I

1111001

A

32

Huffman Decoding 5

3

5 8

2

75

10 15

25
1

1

1

1

0

0

0

0

A

C E

H

I

1111001

AC

33

Huffman Decoding 6

3

5 8

2

75

10 15

25
1

1

1

1

0

0

0

0

A

C E

H

I

1111001

AC

34

Huffman Decoding 7

3

5 8

2

75

10 15

25
1

1

1

1

0

0

0

0

A

C E

H

I

1111001

ACE

35

Huffman Code Properties

• Prefix code
– No code is a prefix of another code

– Example
• Huffman(“I”) 00

• Huffman(“X”) 001 // not legal prefix code

– Can stop as soon as complete code found

– No need for end-of-code marker

• Nondeterministic
– Multiple Huffman coding possible for same input

– If more than two trees with same minimal weight

36

Huffman Code Properties

• Greedy algorithm
– Chooses best local solution at each step

– Combines 2 trees with lowest frequency

• Still yields overall best solution
– Optimal prefix code

– Based on statistical frequency

• Better compression possible (depends on
data)
– Using other approaches (e.g., pattern dictionary)

37

38

Huffman Code Construction

•Character count in text.

•Character Encoding?

Char Freq

E 125

T 93

A 80

O 76

I 73

N 71

S 65

R 61

H 55

L 41

D 40

C 31

U 27

Huffman Code Construction
Char Freq
E 125
T 93
A 80
O 76
I 73
N 71
S 65
R 61
H 55
L 41
D 40
C 31
U 27

C

31

U

27
39

Huffman Code Construction

58

C

31

U

27
40

Char Freq
E 125
T 93
A 80
O 76
I 73
N 71
S 65
R 61

58
H 55
L 41
D 40

C 31
U 27

Huffman Code Construction

58

81

C

31

U

27
41

D

40

L

41

Char Freq
E 125
T 93

81
A 80
O 76
I 73
N 71
S 65
R 61

58
H 55

L 41
D 40

Huffman Code Construction

58

113

H

55

81

C

31

U

27
42

D

40

L

41

Char Freq
E 125

113
T 93

81
A 80
O 76
I 73
N 71
S 65
R 61

58
H 55

Huffman Code Construction

58

113

H

55

126

R

61

S

65

81

C

31

U

27
43

D

40

L

41

Char Freq
126

E 125
113

T 93
81

A 80
O 76
I 73
N 71

S 65
R 61

Char Freq
144
126

E 125
113

T 93
81

A 80
O 76

Huffman Code Construction

58

113

H

55

144

N

71

I

73

126

R

61

S

65

81

C

31

U

27
44

D

40

L

41

I 73
N 71

Char Freq
156
144
126

E 125
113

T 93
81

Huffman Code Construction

58

113

H

55

144

N

71

I

73

126

R

61

S

65

81

D

40

L

41

156

A

80

C

31

U

27
45

O

76

A 80
O 76

Huffman Code Construction

58

113

H

55

144

N

71

I

73

126

R

61

S

65

81

156 174

A

80

O

76

D

40

C

31

U

27
46

L

41

T

93

Char Freq
174
156
144
126

E 125
113

T 93
81

Char Freq
238
174
156
144
126

Huffman Code Construction

58

113144

N

71

I

73

126

R

61

S

65

238

H

55

E

12581

156 174

D

40

L

41

T

93

A

80

C

31

U

27
47

O

76

E 125
113

Huffman Code Construction

58

113144126

238

H

55

E

125

270

N

71

I

73

R

61

S

65

81

156 174

D

40

L

41

T

93

A

80

C

31

U

27
48

O

76

Char Freq
270
238
174
156

144
126

Huffman Code Construction

58

113144126

238

H

55

E

125

270

N

71

I

73

R

61

S

65

330

81

156 174

D

40

C

31

U

27
49

L

41

T

93

A

80

O

76

Char Freq
330
270
238

174
156

Huffman Code Construction

58

113144126

238
270

330 508

H

55

N

71

I

73

R

61

S

65

E

12581

156 174

D

40

C

31

U

27
50

L

41

T

93

A

80

O

76

Char Freq
508
330

270
238

Huffman Code Construction

58

113144126

238
270

330 508

838

81

156 174

H

55

C

31

U

27
51

N

71

I

73

R

61

S

65

E

125

D

40

L

41

T

93

A

80

O

76

Char Freq
838

508
330

Huffman Code Construction

R S N I

E

H

C U

0

0

T

D L

1

0 0

A O

52

0

11

1

10

0

1

1

1

1

1

1

0

0

0

0

0

1

Char Freq Fixed Huff

E 125 0000 110

T 93 0001 011

A 80 0010 000

O 76 0011 001

I 73 0100 1011

N 71 0101 1010

S 65 0110 1001

R 61 0111 1000

H 55 1000 1111

L 41 1001 0101

D 40 1010 0100

C 31 1011 11100

U 27 1100 11101

Total 838 4.00 3.62

