Analysis and Design of Algorithms

Asymptotic Analysis

Instructor: Morteza Zakeri Slide by: George Bebis

(Chapter 3, Appendix A)

Analysis of Algorithms

- An *algorithm* is a finite set of precise instructions for performing a computation or for solving a problem.
- What is the goal of analysis of algorithms?
 - To compare algorithms mainly in terms of running time but also in terms of other factors (e.g., memory requirements, programmer's effort, etc.)
- What do we mean by running time analysis?
 - Determine how running time increases as the size of the problem increases.

Input Size

- Input size (number of elements in the input)
 - size of an array
 - polynomial degree
 - # of elements in a matrix
 - # of bits in the binary representation of the input
 - vertices and edges in a graph

Types of Analysis

- Worst case
 - Provides an upper bound on running time
 - An absolute guarantee that the algorithm would not run longer, no matter what the inputs are
- Best case
 - Provides a lower bound on running time
 - Input is the one for which the algorithm runs the fastest

Lower Bound ≤ *Running Time* ≤ *Upper Bound*

- Average case
 - Provides a prediction about the running time
 - Assumes that the input is random

How do we compare algorithms?

- We need to define a number of <u>objective</u> <u>measures</u>.
- (I) Compare execution times?
 Not good: times are specific to a particular computer (hardware, machine, etc.) !!

(2) Count the number of statements executed? **Not good**: number of statements vary with the programming language as well as the style of the individual programmer.

Ideal Solution

- Express running time as a function of the input size n (i.e., f(n)).
- Compare different functions corresponding to running times.
- Such an analysis is independent of machine time, programming style, etc.

Example

- Associate a "cost" with each statement.
- Find the "total cost" by finding the total number of times each statement is executed.

Another Example

•	Algorithm 3	Cost
	sum = 0;	c _l
	for(i=0; i <n; i++)<="" td=""><td>c₂</td></n;>	c ₂
	for(j=0; j <n; j++)<="" td=""><td>c₂</td></n;>	c ₂
	sum += arr[i][j];	c ₃

 $c_1 + c_2 x (N+1) + c_2 x N x (N+1) + c_3 x N^2$

Asymptotic Analysis

- To compare two algorithms with running times f(n) and g(n), we need a rough measure that characterizes how fast each function grows.
- <u>Hint:</u> use rate of growth
- Compare functions in the limit, that is, asymptotically (مجانبی) !

(*i.e.*, for large values of *n*)

Rate of Growth

• Consider the example of buying elephants and goldfish:

Cost: cost_of_elephants + cost_of_goldfish
Cost ~ cost_of_elephants (approximation)

• The low order terms in a function are relatively insignificant for **large** *n*

 $n^4 + 100n^2 + 10n + 50 \sim n^4$

i.e., we say that $n^4 + 100n^2 + 10n + 50$ and n^4 have the same **rate of growth**

Asymptotic Notation

• O notation: asymptotic "less than":

-
$$f(n) = O(g(n))$$
 implies: $f(n)$ "≤" $g(n)$

• Ω notation: asymptotic "greater than":

$$- f(n) = Ω (g(n)) implies: f(n) "≥" g(n)$$

• Θ notation: asymptotic "equality":

-
$$f(n) = \Theta(g(n))$$
 implies: $f(n)$ "=" $g(n)$

Big-O Notation

- We say f_A(n)=30n+8 is order n, or O(n) It is, at most, roughly proportional to n.
- $f_B(n)=n^2+1$ is order n^2 , or $O(n^2)$. It is, at most, roughly proportional to n^2 .
- In general, any O(n²) function is faster- growing than any O(n) function.

Visualizing Orders of Growth

 On a graph, as you go to the right, a faster growing function eventually becomes larger...

Increasing $n \rightarrow$

More Examples ...

- $n^4 + 100n^2 + 10n + 50$ is $O(n^4)$
- $10n^3 + 2n^2$ is $O(n^3)$
- $n^3 n^2$ is $O(n^3)$
- Constants
 - -10 is O(1)
 - 1273 is O(1)

Back to Our Example

• Both algorithms are of the same order: O(N)

Example (cont'd)

Cost
C _I
c ₂
c ₂
C ₃

 $c_1 + c_2 x (N+1) + c_2 x N x (N+1) + c_3 x N^2 = O(N^2)$

Asymptotic notations

• O-notation (formal definition)

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that}$ $0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}.$

g(n) is an *asymptotic upper bound* for f(n).

Big-O Visualization

Examples

- $2n^2 = O(n^3)$: $2n^2 \le cn^3 \Rightarrow 2 \le cn \Rightarrow c = 1$ and $n_0 = 2$
- $n^2 = O(n^2)$: $n^2 \leq cn^2 \Rightarrow c \geq 1 \Rightarrow c = 1$ and $n_0 = 1$
- $1000n^2 + 1000n = O(n^2)$:

1000n²+1000n \leq 1000n²+ n² =1001n² \Rightarrow c=1001 and n₀ = 1000

- n = O(n²): n
$$\leq$$
 cn² \Rightarrow cn \geq 1 \Rightarrow c = 1 and n₀= 1

More Examples

- Show that 30n+8 is O(n).
 - Show $\exists c, n_0: 30n+8 \leq cn, \forall n \geq n_0$.
 - Let c=31, $n_0=8$. Assume $n>n_0=8$. Then cn = 31n = 30n + n > 30n+8, so 30n+8 < cn.

Big-O example, graphically

- Note 30n+8 isn't less than n anywhere (n>0).
- It isn't even less than 31n everywhere.
- But it is less than
 31n everywhere to the right of n=8.

Increasing $n \rightarrow$

No Uniqueness

- There is no unique set of values for n₀ and c in proving the asymptotic bounds
- Prove that $100n + 5 = O(n^2)$
 - 100n + 5 ≤ 100n + n = 101n ≤ $101n^2$

for all $n \ge 5$

 $n_0 = 5$ and c = 101 is a solution

- $100n + 5 \le 100n + 5n = 105n \le 105n^2$

for all $n \ge 1$

 $n_0 = 1$ and c = 105 is also a solution

Must find **SOME** constants c and n_0 that satisfy the asymptotic notation relation

Asymptotic notations (cont.)

• Ω -notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$

 $\Omega(g(n))$ is the set of functions with larger or same order of growth as g(n)

g(n) is an *asymptotic lower bound* for f(n).

Examples

 $- 5n^2 = \Omega(n)$

 \exists *c*, n_0 such that: $0 \le cn \le 5n^2 \Rightarrow cn \le 5n^2 \Rightarrow c = 1$ and $n_0 = 1$

∃ c, n₀ such that: 0 ≤ cn² ≤ 100n + 5 100n + 5 ≤ 100n + 5n (\forall n ≥ 1) = 105n cn² ≤ 105n ⇒ n(cn - 105) ≤ 0

Since n is positive \Rightarrow cn - 105 \leq 0 \Rightarrow n \leq 105/c

 \Rightarrow contradiction: *n* cannot be smaller than a constant

- n = $\Omega(2n)$, n³ = $\Omega(n^2)$, n = $\Omega(logn)$

Asymptotic notations (cont.)

• Θ -notation

 $\Theta(g(n)) = \{ f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that} \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \} .$

 $\Theta(g(n))$ is the set of functions with the same order of growth as g(n)

g(n) is an *asymptotically tight bound* for f(n).

Examples

 $\Box n^2/2 - n/2 = \Theta(n^2)$

- $\frac{1}{2} n^2 \frac{1}{2} n \le \frac{1}{2} n^2 \forall n \ge 0 \implies c_2 = \frac{1}{2}$
- $\frac{1}{2} n^2 \frac{1}{2} n \ge \frac{1}{2} n^2 \frac{1}{2} n * \frac{1}{2} n (\forall n \ge 2) = \frac{1}{4} n^2$

 \Rightarrow c₁= $\frac{1}{4}$

 \Rightarrow only holds for: $n \leq 1/C_1$

Examples

- $6n^3 \neq \Theta(n^2)$: $c_1 n^2 \leq 6n^3 \leq c_2 n^2$

 \Rightarrow only holds for: $n \le c_2 / 6$

- n ≠ $\Theta(\log n)$: c₁ logn ≤ n ≤ c₂ logn

 \Rightarrow c₂ \ge n/logn, \forall n \ge n₀ - impossible

Relations Between Different Sets

• Subset relations between order-of-growth sets.

Common orders of magnitude

Common orders of magnitude

n	$f(n) = \lg n$	f(n) = n	$f(n) = n \lg n$	$f(n) = n^2$	$f(n) = n^3$	$f(n) = 2^n$
10	0.003 μs*	0.01 µs	0.033 μs	0.1 µs	1 µs	iμs
20	$0.004 \ \mu s$	0.02 µs	0.086 µs	$0.4 \ \mu s$	8 µs	L ms [†]
30	0.005 µs	0.03 µs	$0.147 \ \mu s$	0.9 µs	27 µs	l s
40	0.005 μs	0.04 µs	0.213 µs	$1.6 \ \mu s$	64 µs	18.3 mir
50	0.005 µs	0.05 µs	0.282 µs	2.5 µs	.25 µs	13 days
10^{2}	0.007 µs	$0.10 \ \mu s$	0.664 µs	10 µs	1 ms	4×10^{15} years
10^{3}	0.010 µs	$1.00 \ \mu s$	9.966 µs	1 ms	1 s	
10^{4}	0.013 µs	$.0 \ \mu s$	130 µs	100 ms	16.7 min	
10 ⁵	0.017 µs	0.10 ms	1.67 ms	10 s	11.6 days	
10^{6}	0.020 µs	1 ms	19.93 ms	16.7 min	31.7 years	
107	0.023 µs	0.01 s	0.23 s	1.16 days	31,709 years	
10^{8}	0.027 μs	0.10 s	2.66 s	115.7 days	$3.17 \times 10^{\circ}$ years	
10 ⁹	0.030 µs	1 s	29.90 s	31.7 years		

Logarithms and properties

 In algorithm analysis we often use the notation "log n" without specifying the base

Binary logarithm $\lg n = \log_2 n$ $\log x^y = y \log x$ Natural logarithm $\ln n = \log_e n$ $\log xy = \log x + \log y$ $\lg^k n = (\lg n)^k$ $\log \frac{x}{y} = \log x - \log y$ $\lg \lg n = \lg(\lg n)$ $a^{\log_b x} = x^{\log_b a}$ $\log_b x = \frac{\log_a x}{\log_a b}$

More Examples

- For each of the following pairs of functions, either f(n) is O(g(n)), f(n) is Ω(g(n)), or f(n) = Θ(g(n)). Determine which relationship is correct.
 - $f(n) = \log n^2$; $g(n) = \log n + 5$
 - $f(n) = n; g(n) = \log n^2$
 - f(n) = log log n; g(n) = log n
 - f(n) = n; g(n) = log² n
 - f(n) = n log n + n; g(n) = log n
 - f(n) = 10; g(n) = log 10
 - $f(n) = 2^{n}; g(n) = 10n^{2}$
 - $f(n) = 2^n; g(n) = 3^n$

- $f(n) = \Theta(g(n))$
- $f(n) = \Omega(g(n))$
- f(n) = O(g(n))
- $f(n) = \Omega(g(n))$
- $f(n) = \Omega(g(n))$
- $f(n) = \Theta(g(n))$
- $f(n) = \Omega(g(n))$
- f(n) = O(g(n))

Properties

• Theorem:

 $f(n) = \Theta(g(n)) \Leftrightarrow f = O(g(n)) \text{ and } f = \Omega(g(n))$

- Transitivity:
 - $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$
 - Same for O and Ω
- Reflexivity:
 - $f(n) = \Theta(f(n))$
 - Same for O and Ω
- Symmetry:
 - $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Transpose symmetry:
 - f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

Asymptotic Notations in Equations

- On the right-hand side
 - $\Theta(n^2)$ stands for some anonymous function in $\Theta(n^2)$
 - $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$ means:

There exists a function $f(n) \in \Theta(n)$ such that

 $2n^2 + 3n + 1 = 2n^2 + f(n)$

• On the left-hand side

 $2n^2 + \Theta(n) = \Theta(n^2)$

No matter how the anonymous function is chosen on the left-hand side, there is a way to choose the anonymous function on the right-hand side to make the equation valid.

Common Summations

- Arithmetic series:
- Geometric series:
 - Special case: $|\chi| < 1$:
- Harmonic series:
- Other important formulas:

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1} (x \neq 1)$$

$$\sum_{k=0}^{\infty} x^{k} = \frac{1}{1 - x}$$

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n$$

$$\sum_{k=1}^{n} \lg k \approx n \lg n$$

$$\sum_{k=1}^{n} k^{p} = 1^{p} + 2^{p} + \dots + n^{p} \approx \frac{1}{p + 1} n^{p+1}$$

(استقرا) Mathematical Induction

- A powerful, rigorous technique for proving that a statement S(n) is true for every natural number n, no matter how large.
- Proof:
 - **Basis step**: prove that the statement is true for n = 1
 - Inductive step: assume that S(n) is true and prove that S(n+1) is true for all $n \ge 1$
- Find case n "within" case n+1

Example

- Prove that: $2n + 1 \le 2^n$ for all $n \ge 3$
- Basis step:
 - n = 3: $2 * 3 + 1 \le 2^3 \Leftrightarrow 7 \le 8$ TRUE
- Inductive step:
 - Assume inequality is true for n, and prove it for (n+1): $2n + 1 \leq 2^{n} \text{ must prove: } 2(n + 1) + 1 \leq 2^{n+1}$ $2(n + 1) + 1 = (2n + 1) + 2 \leq 2^{n} + 2 \leq$ $\leq 2^{n} + 2^{n} = 2^{n+1}, \text{ since } 2 \leq 2^{n} \text{ for } n \geq 1$